GLP-1的前世今生——口服GLP-1R激动剂与GLP-1赛道的展望(连载四)
Part 1. 糖尿病与GLP-1的节流治疗 Part 2. 蜥蜴毒液带来 GLP-1的开源治疗 Part 3. GLP-1赛道的Best-in-class之争 Part 4. 口服GLP-1R激动剂与GLP-1赛道的展望
Part 4. 口服GLP-1R激动剂与GLP-1赛道的展望
口服GLP-1R激动剂
提及方便,注射类药物有着天然的劣势,注射针头的心理恐惧、注射位点的局部反应,都影响着病人的用药意愿,因此便利的口服药物自然成为药物研发的追求方向。
然而,多肽类药物口服难有生物利用度,是一个公认的常识,主要原因就是它们在胃肠道被吸收前,很快就被胃液以及胃肠道中的各种酶降解了。是否能找到一种东西能够在GLP-1类似物被吸收前,保护它不被(快速)降解呢?
还真有人找到了这样的技术,诺和诺德也买到了这个技术。他们将Semaglutide与8-(2-羟基苯甲酰胺基)辛酸钠(SNAC)一起,通过SNAC在胃部形成局部的缓冲体系,中和了部分酸性,延缓了Semaglutide的降解;同时SNAC还能够促进胃壁细胞对Semaglutide的吸收,最终使得Semaglutide的生物利用度有了从0到1的突破——真正的0到1——生物利用度从0%提高到1%。也正是这一突破,实现了Semaglutide的口服给药,并于2019年获得FDA批准,7/14 mg,每天口服一次。口服与注射型Semaglutide7天总剂量的差别,几乎正好是生物利用度的差别。
然而,SNAC技术也并不完美,它至少有两个缺陷:1. 生物利用度在人和人之间的差别(variability)相比注射型更大,相应地带来治疗效果的差别;2. 糖尿病患者一般都患有其他疾病,相应地会服用其他药物,而SNAC有可能增加其他药物的吸收,从而带来潜在的风险。这也是为什么口服型Semaglutide对服药时间、饮食、其他用药的服用时间有诸多限制。正是这些限制,似乎偏离了我们所期望的“方便”。尽管如此,这仍然是口服GLP-1领域的一个里程碑。
怎样才能真正实现口服方便呢?小分子当然是不二选择。GLP-1及其类似物,都是做为GLP-1受体激动剂,与GLP-1受体结合后发挥作用的。那么,只要我们能找到小分子GLP-1受体激动剂,一切问题都会迎刃而解:我们不用担心多肽类药物的免疫原性,不用担心多肽类药物要避免的DPP-4降解,可以实现生物利用度的显著提高(相对于多肽)从而减少病人与病人之间的差别,未来甚至可以把它跟二甲双胍这样的一线用药做到一个片剂里面,等等。
但首先,我们必须要能够找到小分子GLP-1受体激动剂。
要让一个分子量只有几百的小分子去模拟一个长达30个氨基酸长度的多肽,谈何容易?小分子GLP-1受体激动剂,不是大家刚刚想到,刚刚意识到它可能带来的种种优点,而是几十年来,一直没有取得突破。
首先取得突破的是TransTech Pharma(后更名未vTv),他们发现了小分子GLP-1R激动剂——TTP054。这是一个部分激动剂,同时活性也比较弱,因此在临床上最高给到了800 mg的剂量(这已经都接近二甲双胍的高剂量了),每天一次给药,有一定的降糖效果,却不能降体重,因此在II期临床之后就停止开发了。
他们很快又推出了迭代产品——TTP273,这仍然是一个部分激动剂,但活性有所提高。临床剂量倒是降下来了,而为了达到更好的降糖效果,他们使用每天两次的给药方式,但临床结果却并不理想——降糖程度有限,更别提降体重了。
尽管TransTech Pharma的两代产品,并没有在临床取得成功,但他们的努力至少告诉我们两点:1. 我们是完全可以设计出小分子GLP-1R激动剂的;2. GLP-1R部分激动剂已经可以带来降血糖的作用了。
辉瑞(Pfizer)也早早开始进入在小分子GLP-1R激动剂领域,所使用的寻找苗头化合物的方法就是大公司擅长的高通量筛选(HTS)——因为他们拥有自己独特的小分子化合物库。我们完全有理由相信,许多家跨国药企都早就开始使用HTS的方法在寻找小分子GLP-1R激动剂。
这注定是一个艰难的工作,小分子替代比它大得多的多肽,挑战实在太大了。直到Pfizer的科学家们在筛选的Assay上做了一个小小的,却非常重要的改变。而这一改变的逻辑并不复杂——如果小分子没有在生物Assay中体现出阳性信号,不是小分子的活性不够好,就是Assay不够敏感。我们不能控制化合物库里小分子的活性,还不能提高一下Assay的敏感性吗?对GPCR(GLP-1R是Class-B家族GPCR的一员)来说,增加敏感性并不难,只要在Assay里加入GPCR的正向别构调节剂(PAM)即可,而GLP-1R的PAM已经有很多报道了。
正是生物筛选Assay上这一小小的改变,让Pfizer通过HTS的方法找到了hit,并最终找到一个小分子GLP-1R的完全激动剂——PF-06882961[1]。该化合物已经完成了多项临床II期试验,在28天的MAD试验(NCT03538743)中,该化合物已经显示了明确的降糖降体重效果,未来可期。
PF-06882961在临床上需要每天两次口服给药,因此Pfizer很快也推出了迭代产品——PF-07081532,并已经完成了临床I期试验(NCT04305587)。
Chugai公司也找到了自己的小分子GLP-1R激动剂,并在2018年以50M首付款的交易将其临床前小分子GLP-1R激动剂项目转让给Eli Lilly[2]。Eli Lilly认为该化合物是一个条件依赖的完全/部分激动剂,有可能在临床上带来更好的耐受性[3]。目前该化合物已经完成了临床I期试验(NCT04426474),并进入临床II期阶段。
在国内,已有多家公司在小分子GLP-1R激动剂领域布局,上海诚益生物(Eccogene)就是其中一员。诚益生物是一家专注于代谢及免疫慢病领域的药物研发公司,在小分子GLP-1R激动剂领域布局较早,且其核心团队在代谢疾病的小分子研发上有独到之处,曾领导多个代谢慢病项目进入临床。诚益生物的小分子GLP-1R激动剂将于明年(2022年)进入临床I期。
让我们一起期待小分子GLP-1R激动剂领域更多的进展,为2型糖尿病患者带来更多更方便的药物,造福患者与社会。
GLP-1在其他适应症的应用
GLP-1R激动剂临床试验的开展以及上市后的使用,提供了越来越多的实际使用数据,我们可以看到GLP-1R激动剂除了降糖降体重外,还能让糖尿病人有心血管获益[4],对肾脏也有一定的保护作用[5]。此外,GLP-1R还具有许多其他生物学特性及功能,可通过作用于中枢增强学习和记忆功能,因此针对于阿兹海默症的临床研究也正在进行(NCT04777409,NCT04777396)。
版权声明/免责声明
本文为原创首发,版权归拥有者,仅供感兴趣的个人谨慎参考,非商用,非医用、非投资用。
欢迎朋友们批评指正!衷心感谢!
文中图片、视频为授权正版作品,或来自微信公共图片库,或取自网络
根据CC0协议使用,版权归拥有者。
任何问题,请与我们联系。衷心感谢!
推荐阅读
GLP-1的前世今生—— 糖尿病与GLP-1的节流治疗(连载一) GLP-1的前世今生——蜥蜴毒液带来GLP-1的开源治疗(连载二) GLP-1的前世今生——GLP-1赛道的Best-in-class之争(连载三) 创新药时代,CMC先行!——新Logo,新海报!中国新药CMC高峰论坛全新驶来! 国家药监局药审中心副主任周思源:以临床价值为导向的药物研发与科学监管 国家药品监督管理局正式受理赛诺菲糖尿病创新药iGlarLixi上市申请 最强创投大会卫星会!双元盛锋Bio酒会连办六届,共议差异化创新赢得未来! HIV治疗正式进入基因编辑时代! 中国好BD | 阿诺医药 见证!“2020年度中国生物医药企业创新力百强”名单公布 光遗传学会不会获诺奖? 众望所归!2021拉斯克奖揭晓,两位mRNA先驱摘得桂冠,光遗传学也获奖了 灵魂拷问!如果mRNA技术今年能摘得诺奖,谁才是最大的贡献者?
国内药企走向合作“拐点”,恒瑞们离国际顶级药厂更近了? 讲座直播:2021年度诺贝尔生理学/医学奖花落谁家?| 药时代与返朴联合主办 创新药时代,CMC先行!——新Logo,新海报!中国新药CMC高峰论坛全新驶来! 腾盛博药——一个创新药领域的“四有青年”! 灵魂拷问!恒瑞应该对标哪一家外国药企?请投下您宝贵的一票! 报告!我要实名举报生物医药投资人中的两面派! 海和药物谷美替尼片获纳入突破性治疗药物品种用于治疗具有MET 14外显子跳变的局部晚期或转移性非小细胞肺癌 Moderna的成功难以复制?下一匹黑马会是谁? 热烈祝贺!恒瑞医药张连山、复宏汉霖张文杰、赛诺菲大中华区总裁贺恩霆等行业领袖荣获上海市“白玉兰纪念奖”表彰! 斗胆跨界说恒瑞 | 附:您认为恒瑞应该对标一家外国药企吗?请投票! 斗胆给恒瑞支支招! 辉瑞专栏 | 成功的CDMO合作如何为无菌注射产品的成功奠定基础 (第二部分,共计六部分) 深度雄文 | 重新定义恒瑞 中国罕见病定义研究报告发布:患病人数小于14万为罕见病 医药股的寒冬,离结束还有多远? 关注!莆田已现24例阳性,初判德尔塔!又一国产新冠“特效药”传来大消息…… 刚刚!2022科学突破奖公布,两位mRNA技术先驱与其他23名学者分享1575万美元奖金 中国仿制药辛酸往事:用量85%的仿制药,只花了12%的医药支出。人才怎样才能留在制造业? 3.8+万人观看!诺华人才空中宣讲精彩回顾 Promega开班在即!| 如此火热的PROTAC不可不知! 特别报道 | 明星公司今何在?十年过去了,这些生物技术公司还好吗?(下) Startup Biotech公司架构及融资方案设计 | 药时代直播间第71期 Science重磅:颠覆教科书!科学家找到癌症发生源头,治愈肿瘤有了新思路